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A numerical study of drop-on-demand ink jets
J. Frcmu

International Business Machines Corporation, Research Laboratory,
5600 Cottle Road, San Jose, California 95193

Abstract

A discussion is giver of ongoing work related to development and utilization of a numerical model for
treating the fluid dynamics of ink jets. The model embodies the complete nonlinear, time dependent,
axi-symmetric equations in finite difference form. An earlier work treated continuous jets in which perilodic
boundary conditions allowed study of local capillary instability to drop formation in a moving reference
frame. The present study includes the jet nozzle geometry with no-slip boundary conditions and the existence
of a contact circle. The contact circle is allowed scme freedom of movement, but wetting of exterior surfaces
has not yet been addressed. The principal objective in current numerical experiments is to determine what
pressure history, in conjunction with surface forces, will lead to clean drop formation.

I. Introduction

Recent experimental fluid drop studies related to ink jet printer design have provided an extensive input
to guide development of a comprehensive numerical model for treating surface tension driven flows. As a
consequence, a full nonlinear model now provides feedback of fundamental interest regarding the sppropriate
interaction of forces for drop formation. The system of numerical programs is lengthy and complex but seems
adaptable to many problems involving drops and bubbles.

In a previous study, we considered the so-called "continuous jet", where equally spaced drops are produced
in a continuous stream.i An "intinite jet'' model, assuming periodic boundary conditions for a single drop
region, provided information on drop stream control through suitable harmonic disturbances. Of general
interest beyond practical matters of ink jets is that these numerical solutions gave the complete intervening
behavior between Rayleigh's inviscid capillary jet? (initial solution) and Lamb's oscillating drop after
breakup3 (final solution).

The present study has the added complication of flow from a nozzle, controlled by a pressure history
intended for the release of a single drop. A contact circle is now involved with the uncertainty of what
constitutes & rigorous treatment of such a boundary. Further uncertainty exists regarding the pressure history.
produced by a transducer, since the small scale of the jet precludes measurement of even peak pressures.
Fortunately the parameter R/W (Reynolds number / Weber number) is in & range that is amenable to numerical
approximation, and it therefore seems possible that numerical experimentation will shed light on the existing
uncertainties.

Currently, the numerical programs are operational with contact circle treatment such that no wetting is
permitted, as is generally the case with analytic treatment of pendant drops. Motion of the contact circle
occurs when negative pressures (relative to ambient) are applied at the nozzle entrance and fluid is drawn
inward from the free surface. Currently, a square wave history of uniform pressure at the nozzle inlet is
emploved to drive the jet, A positive pulse sufficient to produce the experimental drop size is followed by a
negative pulse which serves to initiate detachment of a drop. The negative pulse is terminated when the net
impulse returns to zero. At this stage, surface tension must carry the contraction to final detachment of the
drop. The objective of the work is to establish quantitatively the conditions which provide optimum drop
characteristics for high resolution printing.

In the following, we outline the numerical method which does not differ appreciably from reference 1. We
then discuss a series of results which have thus far been confined to parameters of interest in ink jet
hardware development, Concluding remarks point up those aspects of the work where numerical solution has
provided practical insight into the behavior of the flows.

II1. Numerical Method

The geometry we consider is easily visualized from an examination of output graphics of Fig. 1. A nozzle
section of unit radius with inlet on the left is assumed to be connected to a cylindrical chamber with radius
large compared to the nozzle. In Fig. 1 the nozzle section is five units in length. (Note that tick marks on
plot axes define finite difference mesh distances). Only a small additional annular region is needed in the
geometry since drops generally will be limited to sizes on the order of the nozzle diameter and wetting of the
outlet facing is not currently permitted., Axi-symmetry is assumed and hence the calculation region involves
only the upper half of the views in the output graphics. The lower half is added for esthetic purposes in the
plotting programs.

The initial solution is impulsive with a prescribed uniform pressure at the circular cross section of the
inlet. At the initial instant (t=0) the outlet meniscus is flush with the nozzle facing, this being the

54

v



e

Ly

N TR

oy W

equilibrium configuration in the absence of wetting, Taking the ambient pressure as zero at this free surface
we begin with a linear axial pressure gradient in the nozele section. The flow velocities are initially gzero.
The calculation proceeds by explicit time differences with all succeeding time steps following the same
prescription which we will now outline for a first step.

Because we here use a vorticity streamfunction formulation our first aim is to provide appropriate
boundary conditions for the latter. This is rather complex since indeed none of the boundaries except the
axis of aymmetry can be treated simply especially since wé want a time varying pressure at the inlet and also
vish to provide for entrance flow from a chamber. wWe begin in a somewhat roundabout way by computing the
velocity fields through the momentum equations. In axi-symmetric form these equations are

2
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Here u is the axial velocity (z direction) and v 1z the radial velocity (r direction). P is the pressure, p
is the fluid density and v the fluid viscosity. We choose to express the diffusion terms as vorticity
gradients because the vorti. ‘rv (w) is always available to simplity the calculation. However, we currently
are expressing the diff::sion 1 the axial velocity equation in terms of u because accuracy in the nozzle
boundary layer seems to requs it.

A small forward integratiou in tirm. 2f (1) leads to flow because of the pressure gradient in the nozzle.
Now by integrating the first of (1) over a fluid (control) volume of the nozzle we may obtain the uniform
streamfunction value at the nozzle boundary relative to a zero streamline at the axis. That is, the time
derivative of :%e streamfunction Q at the nozzle surface becomes
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where we have deleted terms that do not contribute. In (2) L and R refer to left and right cross sections of
the cylindrical control volume which initially i{ncludes the entire fluid region. z, is the length of the
nozzle and LA its radius.

We can, of cour:e, have the control volume continue to be all of the fluid region even when a drop is
forming but then (2) becomes a more difficult expression., Also, if the free surface draws inward the control
volume, as expressed in (2), must be shortened by revising z, and excluding some of the fluid near the outer
edge of the outlet.

Thus rar we still do not know the boundary conditions for Q at the entrance of the nozzle or at the free
surface. For the latter we integrate the expressions

%% = -~ rv and %% - ru 3)

singly or in combination, beginning at the axis of symmetry outwi.d to . 2 surface. This provides for Q at
points on the surface at roughly mesh length distances. It 1s n2cessary, huwever, to define the free surface
as a set of particles generally 5 to 10 per mesh distance. At these surface particles Q is given through
interpolation among those given above and the value previously obtained at thes nozzle boundary.

Finally, two conditions are provided at the inlet. If flow is inward we simulate flow from a large
chamber by requiring uniform inflow. This effectively requires the boundary layer at the nvzzle surface to
begin at the inlet, With Q already known at the nozzle boundary, a mean velocity u may be obtained using the
second of (3) for the entire inlet cross section. Reversing the procedure we obtain Q at inlet mesh points.
Q is not linear in the axis-symmetric case,

For reverse flow we assume that flow into the chamber will be the same as in the immediately adjacent
region inside the nozzle or

8o

there.

At this point we are not yet ready to solve internal streamfunction values, we need yet to know the
vorticity in the interior. Using the time dependent equation
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we increment the vorticity forward in time as we had done the velocities. This 15 of course meaningless for
the first time step because the vorticity field is null. At the second time step and all following vorticity

will derive from the no-slip nozzle surface and to a lesser extent from the free surface.

Internal streamfunction values are now obtained by simultaneous sclution at all net points of the aquation

2
3°Q 9_ (13
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This 1s followed by resetting the velocities using (3) and the after thought determination of vorticity at the
nozzle surface using

o=~ (5,

The redundancy of the above may be questioned but our objective thus far is to provide for more options on
how solution is to be carried out both for convenicence and accuracy. Solution of (5) 1s of necessity by
iteration rather than direct because of the time varying fluid region. Convergence is of course enhanced if
in the course of getting surface streamfunction values through (3) one fills in internal points. The
difference in the final outcome from (5) relates to truncation errors im (1), particularly in the nonlinear
terms. One in fact would find that strict use of (3) only would leave in doubt what value to give the
streamfunction at the nozzle surface because each integration upward along z=constant lines would give a
different error.

With the streamfunction given at "Lagrangian' free surface points we may evaluate the normal and
tangential velocities there. That is

ur-%% and un-—%%gk (6)

vhere T is tangential and n is normal. The second of these is readily obtained from particle Q values, the
first through a nearest approach method relative to selected interior points followed by interpolation. We
require surface points or particles to carry with them coordinate information, local are lengths and angles
(relative to the axis of symmetry). Using the angle we may obtain u and v for the particles through a
rotati>nal transformation.

Updating the surface configuration with
=—=u and TV (€]
we proceed to determine new local arc lengths along the surface ind new angles, Thus

612 = 822 4 6r2

and _ (8)
a=tant &
Sz
It is now easy to obtain surface pressures, Relative to ambient "zero" pressure they are given by
P cos a da) du
(E)."’(—r_‘ﬁ)*"ﬁn- ®)

there 0 is the surface tension coefficient. The first term on the right expresses the destabilizing curvature

ound the axis of symmetry, the second, the stabilizing curvature in the r-z plane and the last term the
pressure contribution from local deformation. For the last term we again use a closest appr~ich method for
evaluation relative to selected interior points. However, a local continuity expression

du du
Nyl S, Vv,
on MR T Yn 31 T 0 (10$)
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could probably be used.

At this stage we may iterate a Poisson's equation for the pressure. That is

2
a—‘iﬁ+%—3—(£ﬂ)--c (11)
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The boundary condition for the pressure is known everywhere except at the nozzle surface where the condition
on the derivative is

(%'E)b - (g':l)b ' 13)

G is required at only interior points.

Obtaining the vorticity at the free surface has been somewhat of a problem. In terms of surface
quantities we write

du du
SN DR & da
w == + an + LI (14)

Unfortunately in a stationary reference frame this is subject to large errors because in a spherical drop (for
example) large numbers must effectively cancel to produce a small real vorticity. To overcome this we define
velocities relative to a mean for each contiguous part of the fluid so that (14) is evaluated in terms of
disturbance quantities.

Scaling to permit nondimensional calculation is the same as with the earlier capillary instability

problem.1 The reference length is the nozzle radius r,. The reference velocity is the capillary wave
velocity

1/2
[od ) , (15)

v - —
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giving a time scale

3) 1/2
r
t, = (9—0— . 16)

This leads to use of the single parameter, Reynolds number over Weber number

1/2

%' (:ﬁ) . an

Thus the above equations ave made dimensionless by replacing V by W/R wherever it appears and replacing g by
1.0,

III., Results

During the development of the numerical program there was constant reference to experimental work that was
being conducted in the development of ink jet hardware.% Unfortunately because of the small size of the jet
the crucial measurement of driving pressure could not be made. Lacking this knowledge, along with uncertainty
concerning the numerical program itself, made convergence to a successful method very difficult. A failure to
obtain a solution comparable to experiment could mean being outside the range of pressure values appropriate
for drop formation or could mean there was a fundamental problem in the numerical program. The program is
quite complex and the running times are by no weans short. Unlike experiments which can be conducted in rapid
succession to achieve a certain operating behavior, the numerical experiments took too much time for many
wrong guesses., Now, however, we are quite close to experiment and the model has shown evidence of being
adequate. We will perhaps never know the exact character of the pressure that drives the jet but once having
achieved agreement in jet characteristi:s, here demonstrated in a quantitative visual form, we are in s
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position to understand most properties of interest in the flows. Even now, however, one must be mindful of
limitations of the approximate solution since unlimited grid resolution is of course impossible.

To illustrate tha numerical solutions we have chosen a case which gives the most interesting overall
results achieved by the time of this writing. Figures 1, 2 and 3 show & saquence of four solutions sach in
consacutive times for R/WaS, The pressure history is one which bagins with a suction (negative pressure)
followed by a positive pressure and then a negative pressure again., The second negative pressure terminates
when the net impulse is zero. Whils not necessary, & very small residual positive pressure rather than sero
was naintained for the remainder of the running time of this case. The square wave pressure at the inlet and
times (both in nondimensional units) are as in Table 1.

Table 1
t P/p
0 -0.21 ~60.,0
0.21 - 0.82 +80.0

0.82 -~ 1.43 60.0
- + 1.0

The nondimensional times for the plots illustrated are given in Table 2.

Table 2

Fig. Time Plot Interval Q MAX QMIN Plot Interval P PMAX PMIN
1-1 0,25 0.03125 0.0 -0.52 4.0 80.0 -2.9

1-2 0.68 0.125 2.03 0.00 4,0 93.3 J.2
1-3 1,03 0.0625 1.97 0.00 4.0 7.5 -84.0
1-4 1.64 0.0625 0.99 -0.17 0.5 7.1 -3,0
2-1 2,05 0,03125 0.78 ~-0.08 0.25 4.5 -0.4
2-2 2.52 0.03125 0.66 -0.07 0.25 4.2 0.0
2-3 2,97 0.03125 0.60 -0.06 0.125 4,2 0.7
2+4 3.57 0.03125 0.53 -0.05 0.25 7.6 0.0
3-1 4,18 0.03125 0.53 =0.05 1.0 17.1 -1.2
3-2 4,52 0.03125 0.53 -0.05 1.0 20.7 ~C.4
3-3 4,67 0.03125 0.54 -0.05 2.0 48,6 0.6
3-4 5,03 0.03125 0.52 ~-0,03 2.0 35.9 0.6

In all figures the streaamfunction is plotted as solid lines. Negative streamlines include tick marks. This
is manifeated as tick marked lines for flow to the left (reverse flow in the nozzle) where the boundary layer
vorticity is predominantly negative. The vorticity vector (positive) is outward in upper half plane and
inward in the lower half. The center line is the streamline Q=0 as discussed previously. Where this line
appears it is 2 solid line without tick marks, There ars also tick marks on the solid boundaries of the
nozzle but since these are rectilinear they are distinguishable from streamlines. As mentioned before, the
tick mark spacing on the rectilinear lines show the grid spacing. This is only roughly true on curved
streamlines,

Pressure 'isobars' are plotted as dashed lines with shorter dashes for negative pressures. The zero
pressure line also has long dashes.

Cne can use the above information and Table 2 to determine contour values throughout the plots. In some
places this is difficult but knowing the maximum and minimum values helps and greater detail is probably of
little use, Because of limited plotting area, say in the contracted neck of the jet, the isobars are
difficult to distinguish as negative or positive. They are of course positive there because of the high
surface pressura. Also it should be noted that in the axi-symmetric case streamlines are not uniformly spaced
for s uniform flow velocity, This is the resson for the gsp in streamlines along the central axis where a
tube of flow involves little trus flow bacause its cross sectional area is small, yet the flow velocity may be
high.

Beginning with Fig, 1 and referring to Table 1 we note that the time is in the period where the inlet
prassure is positive but flow is still into the chamber because of fluid inertia from the initial suction
period, The left most isobar at the inlet is +80 (see Table 2) while the lowest pressure is at the concave
meniscus surface and is -2.9. As a reference it is of interest that, in nondimensional units, a drop of unit
radius has & surface pressure of +2.0. One unit of pressure being being provided by each component of the
surface tension. Here in the first plot the stable componment of the surface tansion is such as to restore the
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flush status of the meniscus at the face of the noszle. Acting along with the positive inlet pressure the
flow direction is soon reversed.

In the second plot of Fig. 1 the toroidal circulation at the inlet is because of £l \ bending inward from
the simulated large chamber preceding the nozzle. The pressure is negative at points just inward from the
circulation where the flow rate is high while at the center line the deformation causes a pressure exceading
the inlet preesure. The meniscus surface has a pressurs near uaity,

In the next plot a drop is forming tlrough forward motion even though the inlet pressure has been
reversed. Note the short dashed lines of pressure (negative) and a sero pressure in the contracted region of
the incipient drop. Again the inlet toroidal circulation is still producing a pressure lower than the applied
inlet pressure but now more negative then the -60 units there. The circulation is in the process of spreading
and dieing out.

In the last plot of Fig. 1 only remnants of the inlet circulation remains and a separation streamline now
divides flow forward in the drop with predominantly reversed flow in the nozzla. Note that reversed flow
begins in the boundary layer of the nozzle. At the time of rhe last plot of Fig. 1 the preasure cycle is
past. The remaining motion of the jet is passive except for the minor influence of the small positive (unit
pressure) hereafter present at the inlet. The highest pressure is at the forward most point of the jet and is
a result of local deformations only.

In Fig. 2 the progress of the jet is observed at four succeeding stages. In the first of these there 1is
evidence of local reverse circulation at the meniscus region tending to remove the concave curvature. This
and the continuing flow into the chamber are because ~f the stabilizing surface tension in this region. At
the same time the destabilizing surface tension component is causing higher pressures at the contraction
although at this stage contraction is dominated simply by mass depletion due to the forward and backward flow.
These processes continue to the time of the lust plot of Fig., 2 where the surface tension pressure at the
contraction is bezoming an influence on local vehavior. The meniscus region has been pushed outward to be
convex partly be.ause of the local high pressure and partly from inertial motion from the earlier restoring
pressure., Also the taper of the connecting shank to the drop is no longer linear. This further indicates the
influence of the surface tension pressure at the contraction.

In Fig. 3 we continue toward drop break off and include two plots following breakoff. Note that a
restoring pressure of the meniscus portion drives fluid into the chamber to a small extent so that the outward
bulge is diminished tetween the first and second plot of Fig. 3. Also we note that a second contraction is
occurring just behind the drop.

Drop break off was here preset to occur when only one mesh distance (1/20 of che nozzle diameter)
remained., At this point the mechanics of the numerical program requires a gero radius and local angles
consistent with a break. The break is assumed to be locally spherical so that the two components of surface
tension are the same. This eliminates the singularity of the unstable component which takes on the value of
the stabilizing component.

Two separate problems are solved simultaneously after breakup. The meniscus converges here to a spherical
surface of unit radius because of the residual unit pressure at the inlet, The drop portion of the jet
proceeds toward a state where a drop plus a satellite exist because of the contraction behind the main drop.

IV. Concluding Comments

We are interested here in summarizing those things learned from the numerical model thus far. In some
cases the information was partially known from experiment and matters were clarified and/or confirmed by the
model. 1n other cases the information from the model gave insight thus far unobtainable experimentally,

1. The peak pressure magnitudes for driving the jet are now obtainable. These, of course, depend on noztle
losses but can be fairly well estimated for an initial trial calculation.

2. The pressure history to drive the jet is nearly a symmetric one for clean drop formation with a net zero
impulse for a single drop. The negative phase of the pressure history is essential to drop break off in
the range of parameters here studied.

3. Uniform pressure at the inlet cross section and ignored wetting of the outer facing of the noszle are
reasonable simplifying sassumptions that do not affect comparison with experiment.

4. 1In the range of parameters here studied, the meniscus is very overdamped as is the drop. Experimental
meniscus oscillations presumsbly relate to chamber or chamber to nozzle transition characteristics. The
latter can be studied with the present model.

5. The flow fields throughout the history of drop generation may be analyzed in alrost complete detail from
the numerical results and, internal flows, usually not visible experimentally, may here be studied.
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Figure 1. Computer graphical output for numerical solution ouf jet drop formation., See Table 2,
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